DIFFUSION
Transport processes: processes in which the spatial distribution of a physical quantity is altered or translocated

- ENERGY: HEAT (Q) / WORK (W)
- MATTER: PARTICLES (m)
GENERAL DESCRIPTION

intensive physical quantity: \(x \) (temperature (T), pressure (p), chemical potential (\(\mu \)), electrostatic potential (\(\phi \)), …)

extensive physical quantity: \(y \) (entropy (S), volume (V), mass (m), electric charge (Q), …)

inhomogeneity in an intensive physical quantity:

- gradient of \(x \)

\[
X = - \frac{\Delta x_{\text{intensive}}}{\Delta r}
\]

provides force that drives the flow of the corresponding extensive quantity \(y \)

homogeneity in the intensive physical quantity

\(x = \text{constant} \)

\[
X = 0
\]
GENERAL DESCRIPTION

Δy extensive physical quantity flows through a surface of A (perpendicular to the direction of the transport) during Δt

\[I_v = \frac{\Delta y}{\Delta t} \]

flow rate

\[J = \frac{I_v}{A} = \frac{\Delta y}{A\Delta t} \]

flow density

ONSAGER’S EQUATION: linear, irreversible processes

$Lars$ $Onsager$ $(1903-1976$, NOR-USA, Nobel-prize, 1968)$

J: flow density of the extensive physical quantity (y)

X: thermodynamic force gradient of the intensive physical quantity (x)

L: conductivity coefficient

flow density of the extensive quantity (J) is linearly proportional to the gradient of the intensive quantity (X)
MOLECULAR MOTION

Brownian motion
- Robert Brown (1773-1858, SCO)
- agitation of pollen in a drop of water
- random (zigzag) thermal motion of particles in suspension
- results from the continuous collisions between the particles and the molecules of the suspension

3D Brownian motion of a particle
DIFFUSION

- determined by the inhomogenous distribution of particles
- gradient of the intensive quantity: concentration (c), chemical potential (µ)
- caused by the random thermal motion of particles
- is a net transport of particles from a region of higher concentration to a region of lower concentration by random molecular motion
- continues until the distribution of particles is uniform

\(\Delta n\) (amount of substance in moles) quantity flows through a surface of \(A\) (perpendicular to the direction of the transport) during \(\Delta \tau\):

\[
I_v = \frac{\Delta n}{\Delta \tau}
\]

matter flow rate

depends on \(A\)

unit: mol/s

\[
J = \frac{I_v}{\Delta A} = \frac{\Delta n}{\Delta A \Delta \tau}
\]

matter flow density

independent of \(A\)

unit: mol/m\(^2\)/s
What does the „strength” of diffusion depend on?

Let’s quantify diffusion in 1D (along the x axis)

spatial variation of the concentration along the x axis: \(c(x) \)

assumption: linear change in the concentration

\(\Delta c/\Delta x = \text{constant} \)
Onsager’s linear equation

\[\Delta \tau = \frac{X}{\mu - \Delta \mu} \]

Onsager’s linear equation

\[J \approx X \]

\[J = \frac{I_v}{\Delta A} = \frac{\Delta n}{\Delta A \Delta \tau} \]

\[X = \frac{\Delta c}{\Delta x} \]

FICK’S 1ST LAW

matter flow density is linearly proportional to the drop in concentration

- negative sign: diffusion current is in the direction where the concentration drops
- \(D \): diffusion coefficient

Adolf Fick (1829-1901, GER)
DIFFUSION COEFFICIENT

\[
D = -\frac{\Delta n}{A\Delta \tau \Delta c} \quad [D] = \frac{mol}{m^2s} = \frac{m^2}{s}
\]

- the amount of substance that diffuses through a surface unit during a time unit if the concentration drop was unity

- the diffusion coefficient D tells us how ‘fast’ a given substance is wandering

- depends on both the diffusing particle and the medium in which the particle diffuses
DIFFUSION COEFFICIENT

For spherical particles \(r \) in a viscous medium \(\eta \) at \(T \) temperature:

\[
D = \frac{kT}{6\pi\eta r}
\]

STOKES-EINSTEIN EQUATION

- temperature \((T) \)
 the higher the temperature, the stronger the thermal motion

- geometry of the particle
 globular proteins diffuse more easily than fibres

- molar mass of the particle \((M) \)
 heavier particles diffuse more slowly

- viscosity of the medium \((\eta) \)
 diffusion is faster in gases than in liquids
DIFFUSION COEFFICIENT

<table>
<thead>
<tr>
<th>diffusing particle [molecular mass (MW)] = gmol(^{-1})/geometry</th>
<th>medium</th>
<th>([D] = m^2s^{-1}) T = 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2) (2)</td>
<td>air</td>
<td>(6.4 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(\text{O}_2) (32)</td>
<td>air</td>
<td>(2 \cdot 10^{-5}) x3</td>
</tr>
<tr>
<td>(\text{O}_2) (32)</td>
<td>water</td>
<td>(1.9 \cdot 10^{-9}) x10000</td>
</tr>
</tbody>
</table>

- **glycine (amino acid)**
 - MW: 75
 - water
 - \(0.9 \cdot 10^{-9}\) x10

- **serum albumin (globular)**
 - MW: 69 000 / 60 x 96 x 60 Å
 - water
 - \(6 \cdot 10^{-11}\) x3

- **tropomyosin (fibrilar)**
 - MW: 65 000 / \(l = 400\) Å
 - water
 - \(2.2 \cdot 10^{-11}\)

- **tobacco mosaic virus**
 - MW: 40 000 000 / \(l = 3000\) Å \(d = 150\) Å
 - water
 - \(4.6 \cdot 10^{-12}\)
TIME AND SPACE-DEPENDENCE OF DIFFUSION - FICK’S 2ND LAW

Let’s assume a tiny volume (ΔV), where the concentration (c) is constant in space, so we only have to consider the time dependence: $c(t)$

\[
\Delta V = A\Delta x
\]

particles diffusing IN

\[
J_x = \frac{\Delta n_{IN}}{\Delta A \Delta t}
\]

matter flow density

\[
\Delta n_{IN} \approx J_x A \Delta t
\]

particles diffusing OUT

\[
J_{x+\Delta x} = \frac{\Delta n_{OUT}}{\Delta A \Delta t}
\]

matter flow density

\[
\Delta n_{OUT} \approx J_{x+\Delta x} A \Delta t
\]

1. How does the amount of particles change (Δn) in the selected volume (ΔV) during Δt?

The amount of particles (Δn) diffusing in and out during Δt:

\[
\Delta n_{IN} \approx J_x A \Delta t
\]

\[
\Delta n_{OUT} \approx J_{x+\Delta x} A \Delta t
\]

The net change in the amount of particles (Δn) in the selected volume (ΔV) during Δt:

\[
\Delta n = \Delta n_{IN} - \Delta n_{OUT} \approx J_x A \Delta t - J_{x+\Delta x} A \Delta t = (J_x - J_{x+\Delta x}) A \Delta t
\]
TIME AND SPACE-DEPENDENCE OF DIFFUSION - FICK'S 2ND LAW

2. How does the amount of particles change (Δn) in the selected volume (ΔV) during Δt?

From the definition of the concentration:

$$c = \frac{n}{V} \rightarrow \Delta n = \Delta c V$$

The change in the concentration (Δc) in ΔV during Δt:

$$\Delta c = c_{t+\Delta t} - c_t$$

The net change in the amount of particles (Δn) in the selected volume (ΔV) during Δt:

$$\Delta n = (c_{t+\Delta t} - c_t) \Delta V = (c_{t+\Delta t} - c_t) A \Delta x$$

$$\Delta V = A \Delta x$$
The net change in the amount of particles (Δn) in ΔV during Δt:

- calculated from the concentration (c) = calculated from the matter flow density (J)

\[
(c_{t+\Delta t} - c_t) A \Delta x = (J_x - J_{x+\Delta x}) A \Delta t
\]

\[
\Delta c \Delta x = -\Delta J \Delta t
\]

Fick’s 1st law

\[
J = -D \frac{\Delta c}{\Delta x}
\]

\[
\frac{\Delta (D \frac{\Delta c}{\Delta x})}{\Delta x} = \frac{\Delta c}{\Delta t}
\]

Fick’s 2nd law

\[
D \frac{\Delta c}{\Delta x} = \frac{\Delta c}{\Delta t}
\]
How far does a particle get from its initial position during t?

$R(t) = ?$

$R(t) \approx \sqrt{t} = \sqrt{3Dt}$

Diffusion length (R):
the distance in which the concentration falls to the
$1/e$ of its original value (c_0)

- diffusion coefficient
- time

EXAMPLE: 1D FREE DIFFUSION

- solving Fick's 2nd law is difficult
- special case for 1D:

$$c(x, t) = \frac{n_0}{2\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}}$$
OSMOSIS
OSMOSIS

1. WALL

NO TRANSPORT

the distribution of particles does not change
OSMOSIS

2. NO WALL

free DIFFUSION
both particles (smaller/larger) reach equal distributions
3. SPECIAL WALL

semipermeable
allows smaller solvent molecules to pass through, but not the larger solute molecules → "filter"
pl: animal skin pellicles, walls of living cells, ceramic plate with holes, cellophane

restricted DIFFUSION – OSMOSIS
smaller molecules reach a uniform distribution
larger molecules remain in the compartment
OSMOTIC PRESSURE

low solute high solute

semipermeable membrane

concentration difference + semipermeable membrane
concentration difference + semipermeable membrane

→ solvent (water) flows through the semipermeable membrane

\[J_{\text{IN}} > J_{\text{OUT}} \]
OSMOTIC PRESSURE

low solute high solute

concentration difference + semipermeable membrane

→ solvent (water) flows through the semipermeable membrane \(J_{IN} > J_{OUT} \)

→ the volume of the more concentrated solution increases (height of the liquid column: \(h \))
low solute high solute

OSMOTIC PRESSURE

- Concentration difference + semipermeable membrane
- Solvent (water) flows through the semipermeable membrane: $J_{IN} > J_{OUT}$
- The volume of the more concentrated solution increases (height of the liquid column: h)
- The pressure increases in the more concentrated solution: hydrostatic pressure $\sim \rho$, h

\rightarrow *dynamic equilibrium*: for solvent flow $J_{IN} = J_{OUT}$

OSMOTIC EQUILIBRIUM
concentration difference + semipermeable membrane
→ solvent (water) flows through the semipermeable membrane \(J_{IN} > J_{OUT} \)
→ the volume of the more concentrated solution increases (height of the liquid column: \(h \))
→ the pressure increases in the more concentrated solution: hydrostatic pressure

→ dynamic equilibrium: for solvent flow \(J_{IN} = J_{OUT} \) **OSMOTIC EQUILIBRIUM**

OSMOTIC PRESSURE
\[p_{osmotic} = \rho gh \]

pressure that has to be exerted on the solution connected to pure solvent by a semipermeable membrane to reach dynamic equilibrium, to counteract osmosis
Osmotic Pressure

For dilute solutions and perfect semipermeable membranes, the equation of state of the ideal gas applies:

\[p_{\text{osmotic}} V = nRT \]

\[p_{\text{osmotic}} = \frac{n}{V} RT \]

Osmotic pressure is given by:

\[p_{\text{osmotic}} = cRT \] \textbf{Van’t Hoff Law}

The osmotic pressure exerted by any substance in dilute solution is the same as that it would exert if present as gas in the same volume:

\[p_{\text{osmotic}} \approx c \]

Jacobus van’t Hoff (1852-1911, NED)
different (macro)molecules are sorted by semipermeable membranes
pore size of the membrane → the limit in molecular mass of which molecules can pass through the membrane
CLASSIFYING SOLUTIONS ON THE BASIS OF OSMOTIC PRESSURE

same osmotic pressure: **ISOTONIC**
extra- and intracellular solutions with the same osmotic pressure
the osmotic pressure of the solutions in the cells of human body = osmotic pressure of a 0.87 % (n/n) (0.15 M) NaCl solution → physiologic saline solution

higher osmotic pressure: **HYPERTONIC**
extracellular solution has higher osmotic pressure than the intracellular solution → water efflux

lower osmotic pressure: **HYPOTONIC**
extracellular solution has lower osmotic pressure than the intracellular solution → water influx
mammalian cells: \(p_{\text{osmotic}} = 0.8 \cdot 10^6 \text{ Pa} \)

\(p_{\text{atm}} = 10^5 \text{ Pa} \)

HYPERTONIC
(more concentrated: 10% NaCl)

IZOTONIC
(0.9 % NaCl)

HYPOTONIC
(less concentrated: 0.01% NaCl)

passive water efflux

passive water influx
HYPERTONIC
HYPOTONIC
IZOTONIC (0.9 % NaCl)
RED BLOOD CELLS IN DIFFERENT ENVIRONMENT

BIOPHYSICS I - OSMOSIS
plant cells: \(p_{\text{osmotic}} = 0.4 - 4 \cdot 10^6 \, Pa \)

HYPERTONIC
- **PLAZMOLYSIS**
 - plasma membrane pulls away from the cell wall

IZOTONIC
- **TURGOR PRESSURE**
 - plasma membrane pushed to the cell wall (turgor pressure)

HYPOTONIC
IN THE MEDICAL PRACTICE

injection, infusion
physiologic saline solution

oedemas, inflamed areas
dextran-solution / bitter salt (MgSO$_4$-solution): hypertonic compared to the fluids of the body \rightarrow water efflux

laxative salts
barely absorbed by the large intestine, thus they create hypertonic conditions which causes water influx into the large intestine \rightarrow dilution of colonic content, facilitate excretion
IN THE MEDICAL PRACTICE

haemodialysis
remove soluble chemicals toxic for the body
BIOLOGICAL RELEVANCE
TRANSPORT ACROSS CELL MEMBRANES

transport mechanism

without transporter molecule
- diffusion

with transporter molecule
- facilitated diffusion
- carrier-protein

energetic requirements

passive transport
- oxygen

active transport
- sodium
- glucose
- ATP
- ADP
- inorganic phosphate
Passive transport: DIFFUSION
the particle transport is determined by the concentration gradient

rate is determined by
- concentration gradient
- temperature
- the size and shape of the diffusing particle
- size of the surface
- distance

hydrophobic molecules: O2, N2
small polar molecules: CO2, water, alcohol, urea, glycerine
glucose, saccharose
Passive transport: DIFFUSION OF IONS ACROSS ION CHANNELS

the particle transport is determined by the concentration- and electric potential gradient

electrochemical potential gradient

ion-channels: transmembrane proteins (pore)
closed state: no transport
open state: transport

selectivity: charge and size of the ion
BIOLOGICAL RELEVANCE
TRANSPORT ACROSS CELL MEMBRANES

Passive transport: FACILITATED DIFFUSION
the particle transport is determined by the concentration gradient

carrier-proteins (mediator, transporter)
specifically bind the ions or molecules and promote their transport
transport: reversible conformational change in the carrier-protein